Animation

Maneesh Agrawala

CS 448B: Visualization Fall 2018

Last Time: Network Analysis

Define / search for a particular structure, e.g. complete triads X X Z Z

Announcements

Final project

New visualization research or data analysis

- Pose problem, Implement creative solution
- Design studies/evaluations

Deliverables

- Implementation of solution
- 6-8 page paper in format of conference paper submission
- Project progress presentations

Schedule

- Project proposal: Mon 11/5
- Project progress presentation: 11/12 and 11/14 in class (3-4 min)
- Final poster presentation: 12/5 Location: Lathrop 282
- Final paper: 12/9 11:59pm

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Final poster session

4:20-6pm Wed 12/5 - Lathrop (Library) 282

Provide an overview of your project

- **Problem** Clear statement of the problem your project addresses
- Motivation Explanation of why problem is interesting and difficult
- **Approach** Description of techniques or algorithms you
- Results Screenshots and a working demo of the system you built
- Future Work Explanation of how the work could be extended

Bring laptop for demo

Animation

Question

The goal of visualization is to convey information

How does animation help convey information?

Topics

Understanding motion Interpreting animation Design principles

Understanding Motion

Motion as a visual cue

Pre-attentive

Stronger than color, shape, ...

More sensitive to motion at periphery Triggers an orientation response Motion parallax provide 3D cue (like stereopsis)

How many dots can we simultaneously track?

[Yantis 92, Pylyshn 88, Cavanagh 05]

Motions directly show transitions Can see change from one state to next States are spatial layouts Changes are simple transitions (mostly translations)

Interpreting Animation

Constructing narratives

Animation from: Heider, F. & Simmel, M. (1944). An experimental study of apparant behavior. American Journal of Psychology, 57, 243-259.

> Courtely of: Department of Psychology, University of Kenses: Lawrence.

How does it work?

Problems [Tversky 02]

Difficulties in understanding animation

- Difficult to estimate paths and trajectories
- Motion is fleeting and transient
- Cannot simultaneously attend to multiple motions
- Trying to parse motion into events, actions and behaviors
- Misunderstanding and wrongly inferring causality
- Anthropomorphizing physical motion may cause confusion or lead to incorrect conclusions

Challenges

Choosing the set of steps

- How to segment process into steps?
- Note: Steps often shown sequentially for clarity, rather than showing everything simultaneously

Tversky suggests

- Coarse level segment based on objects
- Finer level segment based on actions
 - Static depictions often do not show finer level segmentation

Design Principles for Animation

Principles for conveying information

Congruence:

The structure and content of the external representation should correspond to the desired structure and content of the internal representation.

Apprehension:

The structure and content of the external representation should be readily and accurately perceived and comprehended.

[from Tversky 02]

Principles for Animation

Congruence

Maintain valid data graphics during transitions Use consistent syntactic/semantic mappings Respect semantic correspondence Avoid ambiguity

Apprehension

Group similar transitions

Minimize occlusion
Maximize predictability
Use simple transitions
Use staging for complex transitions
Make transitions as long as needed, but no longer

Animated Transitions in Statistical Data Graphics

Jeffrey Heer George G. Robertson

Research

Summary

Animations convey motion, action, story, process

Problems

- Divided attention
- Transient

Techniques

- Aid segmentation into events, actions, sequences, story
- Relies on our ability to fill in temporal gaps (closure)
- More research required on principles for creating effective animated visualizations

Most new visualization research is not being used in the real-world. Why?

Most new visualization research is not being used in the real-world. Why?

Perhaps due to lack of proper assessment

Standard measures

Effectiveness

Visualization should do what it is supposed to do

- Does it convey information?
- Does it decrease task time and/or error rate?
- Does it make it easier to make decisions?
- Other measures?

Efficiency

Visualization should use minimal resources

Not always clear how to measure efficiency

Implication is that visualizations should be judged in the context in which they are used

Economic model

- C: Initial development costs
- C_{ν} : Initial costs per user
- Cs: Initial costs per session
- C_e: Perception and exploration costs

n users; m sessions; k explorative steps

 $Cost = C_i + nC_u + nmC_s + nmkC_e$

 $\Delta K = K(T) - K_0$

 $Gain = nmW(\Delta K)$

Case study: Line integral convolution

High initial costs C_{ν} , low n, low m, very high K_0 , ΔK unclear

- Visualization may not present most important quantities
- Often user is left to implement visualization technique
- User must learn how to use visualization effectively

Summary

Need to design and analyze visualization techniques in context of real-world use

The Future of Visualization

Where is more work required?

What technologies will impact visualization design?

What did you find most difficult in creating visualizations and designing visualization techniques?